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LETTER TO THE EDITOR 

The conformal anomaly and the renormalisation group 

T S Bunch 
Department of Applied Mathematics and Theoretical Physics, The University of Liverpool, 
PO Box 147, Liverpool L69 3BX, England 

Received 27 May 1981 

Abstract. The conformal anomaly for an interacting field theory in curved space-time is 
derived in a simple manner using the renormalisation group. 

In this letter, a derivation of the conformal trace anomaly of an interacting field theory 
in curved space-time is presented, based on the use of the renormalisation group. 
A discussion of the connection between the conformal trace anomaly and the re- 
normalisation group has recently been given by Brown and Collins (1980). The 
treatment given below is, however, somewhat simpler than that given by Brown and 
Collins since the conformal anomaly is obtained without recourse to operator product 
expansions. The price paid for this simplicity is that the anomaly is determined only up 
to an arbitrary total divergence. 

Consider a scalar field, q5, in an n-dimensional space-time with metric gFP.  Let the 
scalar field action be 

where the subscript B denotes that the coupling constants are bare. The effective action 
for the matter fields, W[g,,], is formally given by the path integral 

and the semiclassical theory is described by the total action 

s[g,ul= SG[gpuI+  w[gwvl 

where 

(3) 

In equation (4) it has been necessary to include terms quadratic in the Riemann 
curvature to renormalise divergences which appear in W[gpu] as n + 4. The total action 
in n dimensions has the general form 
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The bare coupling constants have dimensions 

A o B  - [mass]" A ~ B  - [mass]"-' L ~ B  - [mass]"--4 
(6) 

mB -[mass]' 6s - [mass]' A B  - [ m a s ~ ] ~ - ~ ,  

To renormalise the theory, introduce dimensionless coupling constants a, 5 and A and 
coupling constants A', At  and m having dimensions 

A. - [massI4 AI -[mass]' m - [mass]' (7) 

and a unit of mass p. By dimensional analysis these coupling constants can all be 
expressed as a power of p times a dimensionless function of the dimensionless 
quantities p-'mB, cB and P " - ~ A B .  They do not depend on the bare gravitational 
couplings as the gravitational field is unquantised. The renormalised total action, SR, is 
now defined in n dimensions by 

(8) S R ( ~ O ,  Ai,  LU, m, 5, A ,  p, n )  = ~ ( A o B ,  A ~ B ,  LYB, mB, 5 ~ ,  A B ,  n ) .  

The right-hand side is independent of p, so differentiating with respect to p keeping all 
bare couplings fixed gives 

where the limit n + 4 has been taken and 

a6 a ( A )  = lim p- 
n + 4  ap 

ah 
P(A)=l imp-  

"-4 ap 

The bare coupling constants can be expressed as power series in A in the standard way 
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Differentiating (16)-(18) with respect to ,U leads to the following results: 

p aA/ap = -A ’ U  ( A )  + A ( n  - 4) 

p amlap = -mAb; ( A )  

p c?[/dp = -&id; ( A ) .  

Hence one obtains the familiar expressions 

P(A) = -A’u; (A)  

y ( A )  =Ab; ( A ) .  

An analysis of the general structure of the Feynman graphs from which the coefficients 
ru, s, and ti, are determined shows that ru is proportional to ( m / ~ ) ~ ,  s, is proportional to 
(mlp)’ and ti, is independent of m / p  (Bunch 1981). Hence differentiation of (19)-(21) 
with respect to p gives 

Theref ore 

A ~ ( A )  = -p4(r1 + ~ r ; )  (31) 

A1(A) = - p U 2 ( s l + ~ d )  (32) 

Bj(A) = - ( t i 1  + A l i i )  (33) 

where the prime denotes differentiation with respect to A .  Note that Ao(A) is actually 
independent of p and proportional to m4 (since rl is proportional to ( m / p ) 4 ) .  Similarly 
A1(A) is proportional to m2 and Bi(A) is independent of m and ,U. In addition to 
(28)-(30), recursion relations are obtained which relate the coefficients of the multiple 
poles in (19)-(21) to r l ,  sl, til, a(A) ,  p ( A )  and y ( A ) .  To obtain the conformal anomaly 
from (9) it is convenient to separate S R  into a gravitational and a matter part 

S R ( ~ O ,  Ai,  ~ r ,  m, A, 5, F )  = S G ( ~ O ,  Ai,  (U) + WR(m, A, 5, p )  (34) 

where SG is given by (4) with bare couplings replaced by renormalised ones. Equation 
(34) is just the definition of WR, the renormalised effective action for the matter fields. 
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Using (34), equation (9) becomes 

Now consider a constant scale transformation of the metric' 
2 

g ,u  + L" = g t w  

This rescales all lengths and so its effect on WR is 

w R [ n 2 g g u ;  my 6, A,  @I = W R k w v ;  o m ,  A ,  a@]- 
Hence 

(36) 

(37) 

where the tilde indicates that the scaled metric HFU is used. Combining (35) and (38) 
gives 

(39) 
a a a  a a a a 

an ag ah am ail0 8'41 aai 
(a - + a- + p- - m (1 + y )  --) +R + ( A ~  - + A 1-- + Bi-) gG = 0. 

Hence the trace of the energy momentum tensor is determined up to a total divergence 
by 

When m = 0 the anomalous trace is 

When m # 0 the contributions proportional to A&), A1(A) and y ( h )  may also be 
regarded as anomalous. 
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