The conformal anomaly and the renormalisation group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14 L281
(http://iopscience.iop.org/0305-4470/14/8/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:41

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The conformal anomaly and the renormalisation group

T S Bunch
Department of Applied Mathematics and Theoretical Physics, The University of Liverpool, PO Box 147, Liverpool L69 3BX, England

Received 27 May 1981

Abstract

The conformal anomaly for an interacting field theory in curved space-time is derived in a simple manner using the renormalisation group.

In this letter, a derivation of the conformal trace anomaly of an interacting field theory in curved space-time is presented, based on the use of the renormalisation group. A discussion of the connection between the conformal trace anomaly and the renormalisation group has recently been given by Brown and Collins (1980). The treatment given below is, however, somewhat simpler than that given by Brown and Collins since the conformal anomaly is obtained without recourse to operator product expansions. The price paid for this simplicity is that the anomaly is determined only up to an arbitrary total divergence.

Consider a scalar field, ϕ, in an n-dimensional space-time with metric $g_{\mu \nu}$. Let the scalar field action be
$S_{\mathrm{M}}\left[g_{\mu \nu}, \phi\right]=\int\left[-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2}\left(m_{\mathrm{B}}^{2}+\xi_{\mathrm{B}} R\right) \phi^{2}-\frac{1}{4} \lambda_{\mathrm{B}} \phi^{4}\right] \sqrt{g} \mathrm{~d}^{n} x$
where the subscript B denotes that the coupling constants are bare. The effective action for the matter fields, $W\left[g_{\mu \nu}\right]$, is formally given by the path integral

$$
\begin{equation*}
\exp \left(\mathrm{i} W\left[g_{\mu \nu}\right]\right)=\int \exp \left(\mathrm{i} S_{\mathrm{M}}\left[g_{\mu \nu}, \phi\right]\right)[\mathrm{d} \phi] \tag{2}
\end{equation*}
$$

and the semiclassical theory is described by the total action

$$
\begin{equation*}
S\left[g_{\mu \nu}\right]=S_{\mathrm{G}}\left[g_{\mu \nu}\right]+W\left[g_{\mu \nu}\right] \tag{3}
\end{equation*}
$$

where
$S_{\mathrm{G}}\left[g_{\mu \nu}\right]=\int\left[\Lambda_{0 \mathrm{~B}}+\Lambda_{1 \mathrm{~B}} R+\alpha_{1 \mathrm{~B}} R^{2}+\alpha_{2 \mathrm{~B}} R^{\alpha \beta} R_{\alpha \beta}+\alpha_{3 \mathrm{~B}} R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta}\right] \sqrt{g} \mathrm{~d}^{n} x$.
In equation (4) it has been necessary to include terms quadratic in the Riemann curvature to renormalise divergences which appear in $W\left[g_{\mu \nu}\right]$ as $n \rightarrow 4$. The total action in n dimensions has the general form

$$
\begin{equation*}
S\left(\Lambda_{0 \mathrm{~B}}, \Lambda_{1 \mathrm{~B}}, \underline{\alpha}_{\mathrm{B}}, m_{\mathrm{B}}, \xi_{\mathrm{B}}, \lambda_{\mathrm{B}}, n\right)=S_{\mathrm{G}}\left(\Lambda_{0 \mathrm{~B}}, \Lambda_{1 \mathrm{~B}}, \underline{\alpha}_{\mathrm{B}}, n\right)+W\left(m_{\mathrm{B}}, \xi_{\mathrm{B}}, \lambda_{\mathrm{B}}, n\right) \tag{5}
\end{equation*}
$$

The bare coupling constants have dimensions

$$
\begin{array}{lll}
\Lambda_{0 \mathrm{~B}} \sim[\mathrm{mass}]^{n} & \Lambda_{1 \mathrm{~B}} \sim[\mathrm{mass}]^{n-2} & \underline{\alpha}_{\mathrm{B}} \sim[\text { mass }]^{n-4} \\
m_{\mathrm{B}} \sim[\mathrm{mass}]^{1} & \xi_{\mathrm{B}} \sim[\mathrm{mass}]^{0} & \lambda_{\mathrm{B}} \sim[\mathrm{mass}]^{4-n} . \tag{6}
\end{array}
$$

To renormalise the theory, introduce dimensionless coupling constants α, ξ and λ and coupling constants Λ_{0}, Λ_{1} and m having dimensions

$$
\begin{equation*}
\Lambda_{0} \sim[\text { mass }]^{4} \quad \Lambda_{1} \sim[\text { mass }]^{2} \quad m \sim[\text { mass }]^{1} \tag{7}
\end{equation*}
$$

and a unit of mass μ. By dimensional analysis these coupling constants can all be expressed as a power of μ times a dimensionless function of the dimensionless quantities $\mu^{-1} m_{\mathrm{B}}, \xi_{\mathrm{B}}$ and $\mu^{n-4} \lambda_{\mathrm{B}}$. They do not depend on the bare gravitational couplings as the gravitational field is unquantised. The renormalised total action, S_{R}, is now defined in n dimensions by

$$
\begin{equation*}
S_{\mathrm{R}}\left(\Lambda_{0}, \Lambda_{1}, \underline{\alpha}, m, \xi, \lambda, \mu, n\right)=\boldsymbol{S}\left(\Lambda_{0 \mathrm{~B}}, \Lambda_{1 \mathrm{~B}}, \underline{\alpha}_{\mathrm{B}}, m_{\mathrm{B}}, \xi_{\mathrm{B}}, \lambda_{\mathrm{B}}, n\right) \tag{8}
\end{equation*}
$$

The right-hand side is independent of μ, so differentiating with respect to μ keeping all bare couplings fixed gives
$\left(\mu \frac{\partial}{\partial \mu}+A_{0}(\lambda) \frac{\partial}{\partial \Lambda_{0}}+A_{1}(\lambda) \frac{\partial}{\partial \Lambda_{1}}+B_{i}(\lambda) \frac{\partial}{\partial \alpha_{i}}+\alpha(\lambda) \frac{\partial}{\partial \xi}+\beta(\lambda) \frac{\partial}{\partial \lambda}-m \gamma(\lambda) \frac{\partial}{\partial m}\right) S_{\mathrm{R}}=0$
where the limit $n \rightarrow 4$ has been taken and

$$
\begin{align*}
& A_{0}(\lambda)=\lim _{n \rightarrow 4} \mu \frac{\partial \Lambda_{0}}{\partial \mu} \tag{10}\\
& A_{1}(\lambda)=\lim _{n \rightarrow 4} \mu \frac{\partial \Lambda_{1}}{\partial \mu} \tag{11}\\
& B_{i}(\lambda)=\lim _{n \rightarrow 4} \mu \frac{\partial \alpha_{i}}{\partial \lambda} \quad i=1,2,3 \tag{12}\\
& \alpha(\lambda)=\lim _{n \rightarrow 4} \mu \frac{\partial \xi}{\partial \mu} \tag{13}\\
& \beta(\lambda)=\lim _{n \rightarrow 4} \mu \frac{\partial \lambda}{\partial \mu} \tag{14}\\
& \gamma(\lambda)=\lim _{n \rightarrow 4}-\frac{\mu}{m} \frac{\partial m}{\partial \mu}=\mu \frac{\partial m}{\partial \mu} \lg \left(\frac{m}{m_{\mathrm{B}}}\right) . \tag{15}
\end{align*}
$$

The bare coupling constants can be expressed as power series in λ in the standard way

$$
\begin{align*}
& \mu^{n-4} \lambda_{\mathrm{B}}=\lambda\left(1+\sum_{\nu=1}^{\infty} \frac{a_{\nu}(\lambda)}{(n-4)^{\nu}}\right) \tag{16}\\
& m_{\mathrm{B}}=m\left(1+\sum_{\nu=1}^{\infty} \frac{b_{\nu}(\lambda)}{(n-4)^{\nu}}\right) \tag{17}\\
& \xi_{\mathrm{B}}=\xi\left(1+\sum_{\nu=1}^{\infty} \frac{d_{\nu}(\lambda)}{(n-4)^{\nu}}\right) \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \mu^{-n} \Lambda_{0 \mathrm{~B}}=\mu^{-4} \Lambda_{0}+\sum_{\nu=1}^{\infty} \frac{r_{\nu}\left(\mu^{-1} m, \lambda, \xi\right)}{(n-4)^{\nu}} \tag{19}\\
& \mu^{2-n} \Lambda_{1 \mathrm{~B}}=\mu^{-2} \Lambda_{1}+\sum_{\nu=1}^{\infty} \frac{s_{\nu}\left(\mu^{-1} m, \lambda, \xi\right)}{(n-4)^{\nu}} \tag{20}\\
& \mu^{4-n} \alpha_{i \mathrm{~B}}=\alpha_{i}+\sum_{\nu=1}^{\infty} \frac{t_{i \nu}\left(\mu^{-1} m, \lambda, \xi\right)}{(n-4)^{\nu}} . \tag{21}
\end{align*}
$$

Differentiating (16)-(18) with respect to μ leads to the following results:

$$
\begin{align*}
& \mu \partial \lambda / \partial \mu=-\lambda^{2} a_{1}^{\prime}(\lambda)+\lambda(n-4) \tag{22}\\
& \mu \partial m / \partial \mu=-m \lambda b_{1}^{\prime}(\lambda) \tag{23}\\
& \mu \partial \xi / \partial \mu=-\xi \lambda d_{1}^{\prime}(\lambda) . \tag{24}
\end{align*}
$$

Hence one obtains the familiar expressions

$$
\begin{align*}
& \alpha(\lambda)=-\xi \lambda d_{1}^{\prime}(\lambda) \tag{25}\\
& \beta(\lambda)=-\lambda^{2} a_{1}^{\prime}(\lambda) \tag{26}\\
& \gamma(\lambda)=\lambda b_{1}^{\prime}(\lambda) . \tag{27}
\end{align*}
$$

An analysis of the general structure of the Feynman graphs from which the coefficients r_{ν}, s_{ν} and $t_{i \nu}$ are determined shows that r_{ν} is proportional to $(m / \mu)^{4}, s_{\nu}$ is proportional to $(m / \mu)^{2}$ and $t_{i \nu}$ is independent of m / μ (Bunch 1981). Hence differentiation of (19)-(21) with respect to μ gives

$$
\begin{align*}
& \mu \frac{\partial \Lambda_{0}}{\partial \mu}=-\mu^{4}\left(r_{1}+\lambda \frac{\partial r_{1}}{\partial \lambda}\right)+(4-n) \Lambda_{0} \tag{28}\\
& \mu \frac{\partial \Lambda_{1}}{\partial \mu}=-\mu^{2}\left(s_{1}+\lambda \frac{\partial s_{1}}{\partial \lambda}\right)+(4-n) \Lambda_{1} \tag{29}\\
& \mu \frac{\partial \alpha_{i}}{\partial \mu}=-\left(t_{i 1}+\lambda \frac{\partial t_{i 1}}{\partial \lambda}\right)+(4-n) \alpha_{i} . \tag{30}
\end{align*}
$$

Therefore

$$
\begin{align*}
& A_{0}(\lambda)=-\mu^{4}\left(r_{1}+\lambda r_{1}^{\prime}\right) \tag{31}\\
& A_{1}(\lambda)=-\mu^{2}\left(s_{1}+\lambda s_{1}^{\prime}\right) \tag{32}\\
& B_{i}(\lambda)=-\left(t_{i 1}+\lambda t_{i 1}^{\prime}\right) \tag{33}
\end{align*}
$$

where the prime denotes differentiation with respect to λ. Note that $A_{0}(\lambda)$ is actually independent of μ and proportional to m^{4} (since r_{1} is proportional to $(m / \mu)^{4}$). Similarly $A_{1}(\lambda)$ is proportional to m^{2} and $B_{i}(\lambda)$ is independent of m and μ. In addition to (28)-(30), recursion relations are obtained which relate the coefficients of the multiple poles in (19)-(21) to $r_{1}, s_{1}, t_{i 1}, \alpha(\lambda), \beta(\lambda)$ and $\gamma(\lambda)$. To obtain the conformal anomaly from (9) it is convenient to separate S_{R} into a gravitational and a matter part

$$
\begin{equation*}
S_{\mathrm{R}}\left(\Lambda_{0}, \Lambda_{1}, \underline{\alpha}, m, \lambda, \xi, \mu\right)=S_{\mathrm{G}}\left(\Lambda_{0}, \Lambda_{1}, \underline{\alpha}\right)+W_{\mathrm{R}}(m, \lambda, \xi, \mu) \tag{34}
\end{equation*}
$$

where S_{G} is given by (4) with bare couplings replaced by renormalised ones. Equation (34) is just the definition of W_{R}, the renormalised effective action for the matter fields.

Using (34), equation (9) becomes
$\left(\mu \frac{\partial}{\partial \mu}+\alpha \frac{\partial}{\partial \xi}+\beta \frac{\partial}{\partial \lambda}-m \gamma \frac{\partial}{\partial m}\right) W_{R}+\left(A_{0} \frac{\partial}{\partial \Lambda_{0}}+A_{1} \frac{\partial}{\partial \Lambda_{1}}+B_{i} \frac{\partial}{\partial \alpha_{i}}\right) S_{\mathrm{G}}=0$.
Now consider a constant scale transformation of the metric

$$
\begin{equation*}
g_{\mu \nu} \rightarrow \tilde{g}_{\mu \nu}=\Omega^{2} g_{\mu \nu} \tag{36}
\end{equation*}
$$

This rescales all lengths and so its effect on W_{R} is

$$
\begin{equation*}
W_{\mathrm{R}}\left[\Omega^{2} g_{\mu \nu} ; m, \xi, \lambda, \mu\right]=W_{\mathrm{R}}\left[g_{\mu \nu} ; \Omega m, \xi, \lambda, \Omega \mu\right] . \tag{37}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left(\Omega \frac{\partial}{\partial \Omega}-m \frac{\partial}{\partial m}-\mu \frac{\partial}{\partial \mu}\right) \tilde{W}_{\mathbf{R}}=0 \tag{38}
\end{equation*}
$$

where the tilde indicates that the scaled metric $\tilde{g}_{\mu \nu}$ is used. Combining (35) and (38) gives
$\left(\Omega \frac{\partial}{\partial \Omega}+\alpha \frac{\partial}{\partial \xi}+\beta \frac{\partial}{\partial \lambda}-m(1+\gamma) \frac{\partial}{\partial m}\right) \tilde{W}_{\mathrm{R}}+\left(A_{0} \frac{\partial}{\partial \Lambda_{0}}+A_{1} \frac{\partial}{\partial \Lambda_{1}}+B_{i} \frac{\partial}{\partial \alpha_{i}}\right) \tilde{S}_{\mathrm{G}}=0$.
Hence the trace of the energy momentum tensor is determined up to a total divergence by

$$
\begin{align*}
\int\left\langle T_{\alpha}^{\alpha}\right\rangle_{\mathrm{REN}} & \left.\sqrt{\mathrm{~g}} \mathrm{~d}^{4} x \equiv \Omega \frac{\partial \tilde{W}_{\mathrm{R}}}{\partial \Omega}\right|_{\Omega=1} \\
& =\left(m(1+\gamma) \frac{\partial}{\partial m}-\alpha \frac{\partial}{\partial \xi}-\beta \frac{\partial}{\partial \lambda}\right) W_{\mathrm{R}}-\left(A_{0} \frac{\partial}{\partial \Lambda_{0}}+A_{1} \frac{\partial}{\partial \Lambda_{1}}+B_{i} \frac{\partial}{\partial \alpha_{i}}\right) S_{\mathrm{G}} . \tag{40}
\end{align*}
$$

When $m=0$ the anomalous trace is

$$
\begin{align*}
\int\left\langle T_{\alpha}^{\alpha}\right\rangle_{\mathrm{REN}} \sqrt{g} \mathrm{~d}^{4} x & =\left(-\alpha(\lambda) \frac{\partial}{\partial \xi}-\beta(\lambda) \frac{\partial}{\partial \lambda}\right) W_{\mathrm{R}}-B_{i}(\lambda) \frac{\partial S_{\mathrm{G}}}{\partial \alpha_{i}} \tag{41}\\
& =\left(\xi \lambda d_{1}^{\prime} \frac{\partial}{\partial \xi}+\lambda^{2} a_{1}^{\prime} \frac{\partial}{\partial \lambda}\right) W_{\mathrm{R}}+\left(t_{i 1}+\lambda t_{i 1}^{\prime}\right) \frac{\partial S_{\mathrm{G}}}{\partial \alpha_{i}} . \tag{42}
\end{align*}
$$

When $m \neq 0$ the contributions proportional to $A_{0}(\lambda), A_{1}(\lambda)$ and $\gamma(\lambda)$ may also be regarded as anomalous.

References

